Exercise 39

(a) If $f(x)=\left(x^{2}-1\right) /\left(x^{2}+1\right)$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Check to see that your answers to part (a) are reasonable by comparing the graphs of f, f^{\prime}, and $f^{\prime \prime}$.

Solution

Evaluate the derivative using the quotient rule.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+1}\right) \\
& =\frac{\left[\frac{d}{d x}\left(x^{2}-1\right)\right]\left(x^{2}+1\right)-\left[\frac{d}{d x}\left(x^{2}+1\right)\right]\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{(2 x)\left(x^{2}+1\right)-(2 x)\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{4 x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Evaluate the second derivative using the quotient rule again.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left[f^{\prime}(x)\right] \\
& =\frac{d}{d x}\left(\frac{4 x}{\left(x^{2}+1\right)^{2}}\right) \\
& =\frac{\left[\frac{d}{d x}(4 x)\right]\left(x^{2}+1\right)^{2}-\left\{\frac{d}{d x}\left[\left(x^{2}+1\right)^{2}\right]\right\}(4 x)}{\left(x^{2}+1\right)^{4}} \\
& =\frac{(4)\left(x^{2}+1\right)^{2}-\left\{\left[\frac{d}{d x}\left(x^{2}+1\right)\right]\left(x^{2}+1\right)+\left(x^{2}+1\right)\left[\frac{d}{d x}\left(x^{2}+1\right)\right]\right\}(4 x)}{\left(x^{2}+1\right)^{4}} \\
& =\frac{4\left(x^{2}+1\right)^{2}-\left[(2 x)\left(x^{2}+1\right)+\left(x^{2}+1\right)(2 x)\right](4 x)}{\left(x^{2}+1\right)^{4}} \\
& =\frac{4-8 x^{2}-12 x^{4}}{\left(x^{2}+1\right)^{4}} \\
& =\frac{-4\left(x^{2}+1\right)\left(3 x^{2}-1\right)}{\left(x^{2}+1\right)^{4}} \\
& =-\frac{4\left(3 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

Below is a graph of the function and its derivatives versus x.

$f^{\prime}(x)$ is positive wherever $f(x)$ increases, $f^{\prime}(x)$ is zero wherever the slope of $f(x)$ is zero, and $f^{\prime}(x)$ is negative wherever $f(x)$ is decreasing.

Similarly, $f^{\prime \prime}(x)$ is positive wherever $f^{\prime}(x)$ increases, $f^{\prime \prime}(x)$ is zero wherever the slope of $f^{\prime}(x)$ is zero, and $f^{\prime \prime}(x)$ is negative wherever $f^{\prime}(x)$ is decreasing. The answers in part (a) are reasonable then.

